Cart (Loading....) | Create Account
Close category search window
 

Power Handling of Electrostatic MEMS Evanescent-Mode (EVA) Tunable Bandpass Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoguang Liu ; Univ. of California, Davis, CA, USA ; Katehi, L.P.B. ; Chappell, W.J. ; Peroulis, D.

This paper presents the first theoretical and experimental study on the power handling capabilities of electrostatically tunable MEMS cavity filters. The theoretical analysis indicates that the frequency-dependent RF voltage inside a narrowband filter may play an important role in the generation of electromechanical nonlinearities such as frequency response distortion, frequency shift, and bifurcation instability. This analysis also reveals that the filter's power handling capability is dependent on several critical factors, including the capacitive gap, stiffness of the diaphragm actuator, and the overall quality factor (Q) of the evanescent-mode (EVA) resonators. A nonlinear computer-aided design (CAD) model is proposed as a practical tool for capturing the important tradeoffs in high-power design. An EVA tunable resonator and a two-pole 2% filter are fabricated and measured as vehicles to validate the theory and the CAD model. Specifically, a medium-power filter with a tuning range of 2.35-3.21 GHz (1.37:1) and an extracted unloaded quality factor (Qu) of 356-405 shows measured power levels of 23.4 dBm (0.22 W) before bifurcation instability occurs. The measured IIP3 of this filter are 52.1 dBm. The theory and modeling, backed up by the measurements, provide significant insights into the high-power design of electrostatic tunable cavity filters.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:60 ,  Issue: 2 )

Date of Publication:

Feb. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.