By Topic

Effects of Cu diffusion-doping on structural, optical, and magnetic properties of ZnO nanorod arrays grown by vapor phase transport method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Yilmaz, S. ; School of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9, Ireland ; McGlynn, E. ; Bacaksiz, E. ; Ozcan, S.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3673861 

Well-aligned ZnO nanorods were prepared by the vapor phase transport method on Si covered with a ZnO buffer layer. After the nanostructure growth, Cu was doped into the ZnO nanorods by diffusion at three different temperatures and for different times. Undoped and Cu diffusion-doped ZnO samples are highly textured, with the c axis of the wurtzite structure along the growth direction. The incorporation of Cu caused some slight changes in the nanorod alignment, although the wurtzite crystal structure was maintained. X-ray photoelectron spectroscopy measurements revealed that Cu ions were in a divalent state and substituted for the Zn2+ ions of the ZnO matrix. Photoluminescence results at 10 K indicate that the incorporation of copper leads to a relative increase of Cu-related structured green band deep level intensity. Magnetic measurements revealed that both undoped and Cu diffusion-doped ZnO samples exhibited room temperature ferromagnetism. It was also found that bound magnetic polarons play an important role in the appearance of room temperature ferromagnetism in Cu diffusion-doped ZnO nanorods.

Published in:

Journal of Applied Physics  (Volume:111 ,  Issue: 1 )