Cart (Loading....) | Create Account
Close category search window

High field-gradient dysprosium tips for magnetic resonance force microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mamin, H.J. ; IBM Research Division, Almaden Research Center, 650 Harry Rd., San Jose, California 95120, USA ; Rettner, C.T. ; Sherwood, M.H. ; Gao, L.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link: 

Magnetic resonance force microscopy (MRFM) is based on measuring the attonewton-scale force between nuclear or electronic spins and a magnetic tip. The force is directly proportional to the magnetic field gradient generated by the tip, making a high moment nanoscale magnet desirable. Dysprosium, with a bulk magnetization 70% higher than iron, is a suitable candidate for such a tip. We have performed MRFM to quantitatively characterize two Dy nanomagnets. We find that magnetic field gradients as high as 6 MT/m (60 G/nm) can be generated, a 40% enhancement compared to our previous FeCo tips.

Published in:

Applied Physics Letters  (Volume:100 ,  Issue: 1 )

Date of Publication:

Jan 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.