By Topic

Kernel-based object tracking via particle filter and mean shift algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chia, Y.S. ; Modelling, Simulation & Comput. Lab., Univ. Malaysia Sabah, Kota Kinabalu, Malaysia ; Kow, W.Y. ; Khong, W.L. ; Kiring, A.
more authors

One of the critical tasks in object tracking is the tracking of fast-moving object in random motion, especially in the field of machine vision applications. An approach towards the hybrid of particle filter (PF) and mean shift (MS) algorithm in visual tracking is proposed. In this proposed system, complete occlusion and random movement of object can be handled due to its ability in predicting the object location with adaptive motion model. In addition, the PF is capable to maintain multiple hypotheses to handle clutters in background and temporary failure. However PF requires a large number of particles to approximate the true posterior of the target dynamics. Therefore, MS algorithm is applied to the sampling process of the PF to move these particles in gradient ascent direction. Consequently a small sample size will be sufficient to represent the system dynamics accurately. The proposed approach is aimed to track the moving object in random directions under varying conditions with acceptable computational time.

Published in:

Hybrid Intelligent Systems (HIS), 2011 11th International Conference on

Date of Conference:

5-8 Dec. 2011