By Topic

Design of a Wideband Horizontally Polarized Omnidirectional Printed Loop Antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kunpeng Wei ; State Key Laboratory on Microwave and Digital Communications, Tsinghua National Laboratory for Information Science and Technology, Department of Electronic Engineering, Tsinghua University, Beijing, China ; Zhijun Zhang ; Zhenghe Feng

This letter presents the design of a novel wideband horizontally polarized omnidirectional printed loop antenna. The proposed antenna consists of a loop with periodical capacitive loading and a parallel stripline as an impedance transformer. Periodical capacitive loading is realized by adding interlaced coupling lines at the end of each section. Similarly to mu-zero resonance (MZR) antennas, the periodical capacitive loaded loop antenna proposed in this letter allows current along the loop to remain in phase and uniform. Therefore, it can achieve a horizontally polarized omnidirectional pattern in the far field, like a magnetic dipole antenna, even though the perimeter of the loop is comparable to the operating wavelength. Furthermore, the periodical capacitive loading is also useful to achieve a wide impedance bandwidth. A prototype of the proposed periodical capacitive loaded loop antenna is fabricated and measured. It can provide a wide impedance bandwidth of about 800 MHz (2170-2970 MHz, 31.2%) and a horizontally polarized omnidirectional pattern in the azimuth plane.

Published in:

IEEE Antennas and Wireless Propagation Letters  (Volume:11 )