By Topic

A Fully Integrated, 290 pJ/bit UWB Dual-Mode Transceiver for cm-Range Wireless Interconnects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Gambini, S. ; Berkeley Wireless Res. Center, Berkeley, CA, USA ; Crossley, J. ; Alon, E. ; Rabaey, J.M.

We present an ultra-wideband transceiver designed for ultra-low-power communication at sub-10 cm range. The transceiver operates at a 5.6 GHz carrier frequency, chosen to minimize path loss when using a 1 cm2 antenna, and can switch its architecture between self-synchronous rectification and low-IF to adapt its power consumption to the channel characteristic in real time. A low-power digital circuit exploits redundancy in the modulation scheme to provide a real-time BER estimate used to close the mode-switching loop. Implemented in 65 nm CMOS, the transceiver consumes 25 μW when transmitting and 245 μW when receiving in low-power mode, plus 45 μW in the clock generator, and only requires an external antenna. Dual-mode operation allows range extension and mitigates interference.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:47 ,  Issue: 3 )