Cart (Loading....) | Create Account
Close category search window
 

Face Recognition Using Sparse Approximated Nearest Points between Image Sets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hu, Yiqun ; The University of Western Australia, Crawley ; Mian, Ajmal S. ; Owens, Robyn

We propose an efficient and robust solution for image set classification. A joint representation of an image set is proposed which includes the image samples of the set and their affine hull model. The model accounts for unseen appearances in the form of affine combinations of sample images. To calculate the between-set distance, we introduce the Sparse Approximated Nearest Point (SANP). SANPs are the nearest points of two image sets such that each point can be sparsely approximated by the image samples of its respective set. This novel sparse formulation enforces sparsity on the sample coefficients and jointly optimizes the nearest points as well as their sparse approximations. Unlike standard sparse coding, the data to be sparsely approximated are not fixed. A convex formulation is proposed to find the optimal SANPs between two sets and the accelerated proximal gradient method is adapted to efficiently solve this optimization. We also derive the kernel extension of the SANP and propose an algorithm for dynamically tuning the RBF kernel parameter while matching each pair of image sets. Comprehensive experiments on the UCSD/Honda, CMU MoBo, and YouTube Celebrities face datasets show that our method consistently outperforms the state of the art.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 10 )
Biometrics Compendium, IEEE

Date of Publication:

Oct. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.