By Topic

Ensemble Segmentation Using Efficient Integer Linear Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alush, Amir ; Bar-Ilan University, Ramt-Gan ; Goldberger, J.

We present a method for combining several segmentations of an image into a single one that in some sense is the average segmentation in order to achieve a more reliable and accurate segmentation result. The goal is to find a point in the “space of segmentations” which is close to all the individual segmentations. We present an algorithm for segmentation averaging. The image is first oversegmented into superpixels. Next, each segmentation is projected onto the superpixel map. An instance of the EM algorithm combined with integer linear programming is applied on the set of binary merging decisions of neighboring superpixels to obtain the average segmentation. Apart from segmentation averaging, the algorithm also reports the reliability of each segmentation. The performance of the proposed algorithm is demonstrated on manually annotated images from the Berkeley segmentation data set and on the results of automatic segmentation algorithms.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 10 )