By Topic

Free Energy Score Spaces: Using Generative Information in Discriminative Classifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Perina, A. ; Microsoft Res., Redmond, WA, USA ; Cristani, M. ; Castellani, U. ; Murino, V.
more authors

A score function induced by a generative model of the data can provide a feature vector of a fixed dimension for each data sample. Data samples themselves may be of differing lengths (e.g., speech segments or other sequential data), but as a score function is based on the properties of the data generation process, it produces a fixed-length vector in a highly informative space, typically referred to as “score space.” Discriminative classifiers have been shown to achieve higher performances in appropriately chosen score spaces with respect to what is achievable by either the corresponding generative likelihood-based classifiers or the discriminative classifiers using standard feature extractors. In this paper, we present a novel score space that exploits the free energy associated with a generative model. The resulting free energy score space (FESS) takes into account the latent structure of the data at various levels and can be shown to lead to classification performance that at least matches the performance of the free energy classifier based on the same generative model and the same factorization of the posterior. We also show that in several typical computer vision and computational biology applications the classifiers optimized in FESS outperform the corresponding pure generative approaches, as well as a number of previous approaches combining discriminating and generative models.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:34 ,  Issue: 7 )