Cart (Loading....) | Create Account
Close category search window
 

Vibrotactile Rendering for a Traveling Vibrotactile Wave Based on a Haptic Processor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sang-Youn Kim ; Interaction Lab., Korea Univ. of Technol. & Educ., Cheonan, South Korea ; Jeong Cheol Kim

Mobile device users can now experience diverse graphical content ranging from a simple static object to an object having complex dynamic behavior. A user who manipulates and plays with such “objects” wants to haptically “feel” the presence of a static object or the motion of a dynamic object. To satisfy this demand, we previously proposed a vibrotactile rendering method based on a vibrotactile traveling wave. Although the proposed method can haptically simulate the dynamic behavior of a target object, it is not easy to delicately generate the traveling vibrotactile wave. The reason is that the sampling rate of the haptic loop in the system determines the performance of the traveling vibrotactile wave. In this study, we develop a haptic processor that can control multiple motors, and furthermore we discuss how we could create traveling vibrotactile waves in mobile devices.

Published in:

Haptics, IEEE Transactions on  (Volume:5 ,  Issue: 1 )

Date of Publication:

Jan.-March 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.