By Topic

Multisource Broadcast in Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Scott C. -H. Huang ; National Tsing Hua University, Hsinchu ; Hsiao-Chun Wu ; Sundaraja Sitharama Iyengar

Nowadays, there is urgent demand for wireless sensor network applications. In these applications, usually a base station is responsible for monitoring the entire network and collecting information. If emergency happens, it will propagate such information to all other nodes. However, quite often the message source is not a fixed node, since there may be base stations in charge of different regions or events. Therefore, how to propagate information efficiently when message sources vary from time to time is a challenging issue. None of conventional broadcast algorithms can deal with this case efficiently, since the change of message source incurs a huge implementation cost of rebuilding a broadcast tree. To deal with this difficult problem, we make endeavor in studying multiple source broadcast, in which targeted algorithms should be source-independent to serve the practical need. In this paper, we formulate the Minimum-Latency Multisource Broadcast problem. We propose a novel solution using a fixed shared backbone, which is independent of the message sources and can be used repeatedly to reduce the broadcast latency. To the best of our knowledge, our work is deemed the first attempt to design such a multisource broadcast algorithm with a derived theoretical latency upper bound.

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:23 ,  Issue: 10 )