Cart (Loading....) | Create Account
Close category search window
 

Exploiting Intrastructure Information for Secondary Structure Prediction with Multifaceted Pipelines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Armano, G. ; Dept. of Electr. & Electron. Eng., Univ. of Cagliari, Cagliari, Italy ; Ledda, F.

Predicting the secondary structure of proteins is still a typical step in several bioinformatic tasks, in particular, for tertiary structure prediction. Notwithstanding the impressive results obtained so far, mostly due to the advent of sequence encoding schemes based on multiple alignment, in our view the problem should be studied from a novel perspective, in which understanding how available information sources are dealt with plays a central role. After revisiting a well-known secondary structure predictor viewed from this perspective (with the goal of identifying which sources of information have been considered and which have not), we propose a generic software architecture designed to account for all relevant information sources. To demonstrate the validity of the approach, a predictor compliant with the proposed generic architecture has been implemented and compared with several state-of-the-art secondary structure predictors. Experiments have been carried out on standard data sets, and the corresponding results confirm the validity of the approach. The predictor is available at http://iasc.diee.unica.it/ssp2/ through the corresponding web application or as downloadable stand-alone portable unpack-and-run bundle.

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:9 ,  Issue: 3 )

Date of Publication:

May-June 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.