By Topic

Decoding of Convolutional Codes Over the Erasure Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tomas, V. ; Dept. of Comput. Sci., Artificial Intell. Univ. of Alicante, Alicante, Spain ; Rosenthal, J. ; Smarandache, R.

In this paper the decoding capabilities of convolutional codes over the erasure channel are studied. Of special interest will be maximum distance profile (MDP) convolutional codes. These are codes which have a maximum possible column distance increase. It is shown how this strong minimum distance condition of MDP convolutional codes help us to solve error situations that maximum distance separable (MDS) block codes fail to solve. Towards this goal, two subclasses of MDP codes are defined: reverse-MDP convolutional codes and complete-MDP convolutional codes. Reverse-MDP codes have the capability to recover a maximum number of erasures using an algorithm which runs backward in time. Complete-MDP convolutional codes are both MDP and reverse-MDP codes. They are capable to recover the state of the decoder under the mildest condition. It is shown that complete-MDP convolutional codes perform in many cases better than comparable MDS block codes of the same rate over the erasure channel.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 1 )