By Topic

A Geometric Approach to Low-Rank Matrix Completion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Dai ; Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom ; Ely Kerman ; Olgica Milenkovic

The low-rank matrix completion problem can be succinctly stated as follows: given a subset of the entries of a matrix, find a low-rank matrix consistent with the observations. While several low-complexity algorithms for matrix completion have been proposed so far, it remains an open problem to devise -type search procedures with provable performance guarantees. The standard approach to the problem, which involves the minimization of an objective function defined using the Frobenius metric, has inherent difficulties: the objective function is not continuous and the solution set is not closed. To address this problem, we consider an optimization procedure that searches for a column (or row) space that is geometrically consistent with the partial observations. The geometric objective function is continuous everywhere and the solution set is the closure of the solution set of the Frobenius metric. We also preclude the existence of local minimizers, and hence establish strong performance guarantees, for special completion scenarios, which do not require matrix incoherence and hold with probability one for arbitrary matrix size.

Published in:

IEEE Transactions on Information Theory  (Volume:58 ,  Issue: 1 )