By Topic

Group-Based Active Query Selection for Rapid Diagnosis in Time-Critical Situations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bellala, Gowtham ; Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA ; Bhavnani, S.K. ; Scott, C.

In applications such as active learning and disease/fault diagnosis, one often encounters the problem of identifying an unknown object through a minimal number of queries. This problem has been referred to as query learning or object/entity identification. We consider three extensions of this fundamental problem that are motivated by practical considerations in real-world,time-critical identification tasks such as emergency response. First, we consider the problem where the objects are partitioned into groups, and the goal is to identify only the group to which the object belongs. Second, we address the situation where the queries are partitioned into groups, and an algorithm may suggest a group of queries to a human user, who then selects the actual query. Third, we consider the problem of object identification in the presence of persistent query noise, and relate it to group identification. To address these problems we show that a standard algorithm for object identification, known as generalized binary search, may be viewed as a generalization of Shannon-Fano coding. We then extend this result to the group-based settings, leading to new algorithms, whose performance is demonstrated through a logarithmic approximation bound, and through experiments on simulated data and a database used for toxic chemical identification.

Published in:

Information Theory, IEEE Transactions on  (Volume:58 ,  Issue: 1 )