By Topic

Voting Among Virtually Generated Versions of a Classification Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hosseinzadeh, A. ; Dept. of Electr. Eng., Amirkabir Univ. of Technol., Tehran, Iran ; Reza, A.M.

A classifier combining strategy, virtual voting by random projection (VVRP), is presented. VVRP takes advantage from the bounded distortion incurred by random projection in order to improve accuracies of stable classifiers like discriminant analysis (DA) where existing classifier combining strategies are known to be failed. It uses the distortion to virtually generate different training sets from the total available training samples in a way that does not have the potential for overfitting. Then, a majority voting combines the base learners trained on these versions of the original problem. VVRP is very simple and just needs determining a proper dimensionality for the versions, an often very easy task. It is shown to be stable in a very large region of the hyperplane constructed by the dimensionality and the number of the versions. VVRP improves the best state-of-the-art DA algorithms in both small and large sample size problems in various classification fields.

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:42 ,  Issue: 3 )