By Topic

Electrochemical Model Based Observer Design for a Lithium-Ion Battery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
6 Author(s)
Klein, R. ; Res. & Technol. Center, Robert Bosch LLC, Palo Alto, CA, USA ; Chaturvedi, N.A. ; Christensen, J. ; Ahmed, J.
more authors

Batteries are the key technology for enabling further mobile electrification and energy storage. Accurate prediction of the state of the battery is needed not only for safety reasons, but also for better utilization of the battery. In this work we present a state estimation strategy for a detailed electrochemical model of a lithium-ion battery. The benefit of using a detailed model is the additional information obtained about the battery, such as accurate estimates of the internal temperature, the state of charge within the individual electrodes, overpotential, concentration and current distribution across the electrodes, which can be utilized for safety and optimal operation. Based on physical insight, we propose an output error injection observer based on a reduced set of partial differential-algebraic equations. This reduced model has a less complex structure, while it still captures the main dynamics. The observer is extensively studied in simulations and validated in experiments for actual electric-vehicle drive cycles. Experimental results show the observer to be robust with respect to unmodeled dynamics as well as to noisy and biased voltage and current measurements. The available state estimates can be used for monitoring purposes or incorporated into a model based controller to improve the performance of the battery while guaranteeing safe operation.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:21 ,  Issue: 2 )