By Topic

A divide-link algorithm based on fuzzy similarity for clustering networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daniel Gómez ; Escuela de Estadìstica, Universidad Complutense de Madrid, Madrid, Spain ; Javier Montero ; Javier Yáñez

In this paper we present an efficient hierarchical clustering algorithm for relational data, being those relations modeled by a graph. The hierarchical clustering approach proposed in this paper is based on divisive and link criteria, to break the graph and join the nodes at different stages. We then apply this approach to a community detection problems based on the well-known edge line betweenness measure as the divisive criterium and a fuzzy similarity relation as the link criterium. We present also some computational results in some well-known examples like the Karate Zachary club-network, the Dolphins network, Les Miserables network and the Authors centrality network, comparing these results to some standard methodologies for hierarchical clustering problem, both for binary and valued graphs.

Published in:

Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on

Date of Conference:

22-24 Nov. 2011