By Topic

A cooperative strategy for parameter estimation problems in Systems Biology: Preliminary results

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Antonio D. Masegosa ; Research Center for ICT (CITIC), University of Granada, Granada, Spain ; Federico Rutolo ; David Pelta

Developing predictive models is one of the key issues in Systems Biology. A critical problems that arises when these models are built is the parameter estimation. The calibration of these nonlinear dynamic models is stated as a nonlinear programming problems (NLP) and its resolution is usually complex due to the frequent ill-conditioning and multimodality of the majority of these problems. For that reason, the use of hybrid stochastic optimization methods has received an increasing interest in recent years. In this work we present a new hybrid method for parameter estimation in Systems Biology. This proposal consists on a set of DE algorithms that cooperate among them through a centralised scheme in which a coordinator controls their behavior by means of a rule system. The comparison with state-of-the-art methods shows the better performance of this cooperative strategy when the complexity of the instances is increased.

Published in:

Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on

Date of Conference:

22-24 Nov. 2011