By Topic

Improving Chinese Dependency Parsing with Self-Disambiguating Patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Likun Qiu ; Key Lab. of Comput. Linguistics, Peking Univ., Beijing, China ; Lei Wu ; Kai Zhao ; Changjian Hu
more authors

To solve the data sparseness problem in dependency parsing, most previous studies used features constructed from large-scale auto-parsed data. Unlike previous work, we propose a new approach to improve dependency parsing with context-free dependency triples (CDT) extracted by using self-disambiguating patterns (SDP). The use of SDP makes it possible to avoid the dependency on a baseline parser and explore the influence of different types of substructures one by one. Additionally, taking the available CDTs as seeds, a label propagation process is used to tag a large number of unlabeled word pairs as CDTs. Experiments show that, when CDT features are integrated into a maximum spanning tree (MST) dependency parser, the new parser improves significantly over the baseline MST parser. Comparative results also show that CDTs with dependency relation labels perform much better than CDT without dependency relation label.

Published in:

Asian Language Processing (IALP), 2011 International Conference on

Date of Conference:

15-17 Nov. 2011