Cart (Loading....) | Create Account
Close category search window

Automatic Extraction of Pipeline Parallelism for Embedded Software Using Linear Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Cordes, D. ; Tech. Univ. Dortmund, Dortmund, Germany ; Heinig, A. ; Marwedel, P. ; Mallik, A.

The complexity and performance requirements of embedded software are continuously increasing, making Multiprocessor System-on-Chip (MPSoC) architectures more and more important in the domain of embedded and cyber-physical systems. Using multiple cores in a single system reduces problems concerning energy consumption, heat dissipation, and increases performance. Nevertheless, these benefits do not come for free. Porting existing, mostly sequential, applications to MPSoCs requires extracting efficient parallelism to utilize all available cores. Many embedded applications, like network services and multimedia tasks for voice-, image- and video processing, are operating on data streams and thus have a streaming-based structure. Despite the abundance of parallelism in streaming applications, it is a non-trivial task to split and efficiently map sequential applications to MPSoCs. Therefore, we present an algorithm which automatically extracts pipeline parallelism from sequential ANSI-C applications. The presented tool employs an integer linear programming (ILP) based approach enriched with an adequate cost model to automatically control the granularity of the parallelization. By applying our tool to real-life applications, it can be shown that our approach is able to speed up applications by a factor of up to 3.9x on a four-core MPSoC architecture, compared to a sequential execution.

Published in:

Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on

Date of Conference:

7-9 Dec. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.