Cart (Loading....) | Create Account
Close category search window
 

RDTS: A Reliable Erasure-Coding Based Data Transfer Scheme for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Srouji, M.S. ; Dept. of Embedded Syst., Karlsruhe Inst. of Technol., Karlsruhe, Germany ; Zhonglei Wang ; Henkel, J.

Information redundancy using erasure coding is an efficient way to increase the reliability of data transmission in communication systems. In Wireless Sensor Networks (WSNs), erasure encoding and decoding are performed on the source node and sink node, respectively, and a large amount of redundant data is generated according to the quality of the whole path and transmitted through multiple hops. In this paper, we propose a reliable data transfer scheme, RDTS, where erasure coding is performed in a hop-by-hop manner, which means that each intermediate node is able to perform erasure coding and adaptively calculates the number of redundant packets for the next hop. Usually, only a small amount of redundant data is needed for reliable transmission over a single hop. Therefore, using RDTS, the network load caused by redundant data is significantly reduced and also well balanced, leading to a longer network lifetime. In addition, hop-by-hop coding has also the advantage of low coding overhead. We further reduce the coding time by proposing a partial coding scheme. Our experimental results show that RDTS achieves up to 69.7% less network load and 153.8% longer lifetime, and meanwhile, the coding overhead is reduced by up to 78.1%, compared with a state-of-the-art erasure-coding based approach.

Published in:

Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on

Date of Conference:

7-9 Dec. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.