By Topic

Design and Implementation of MapReduce Using the PGAS Programming Model with UPC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Teijeiro, C. ; Dept. of Electron. & Syst., Univ. of A Coruna, A Coruña, Spain ; Taboada, G.L. ; Tourino, J. ; Doallo, R.

MapReduce is a powerful tool for processing large data sets used by many applications running in distributed environments. However, despite the increasing number of computationally intensive problems that require low-latency communications, the adoption of MapReduce in High Performance Computing (HPC) is still emerging. Here languages based on the Partitioned Global Address Space (PGAS) programming model have shown to be a good choice for implementing parallel applications, in order to take advantage of the increasing number of cores per node and the programmability benefits achieved by their global memory view, such as the transparent access to remote data. This paper presents the first PGAS-based MapReduce implementation that uses the Unified Parallel C (UPC) language, which (1) obtains programmability benefits in parallel programming, (2) offers advanced configuration options to define a customized load distribution for different codes, and (3) overcomes performance penalties and bottlenecks that have traditionally prevented the deployment of MapReduce applications in HPC. The performance evaluation of representative applications on shared and distributed memory environments assesses the scalability of the presented MapReduce framework, confirming its suitability.

Published in:

Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on

Date of Conference:

7-9 Dec. 2011