Cart (Loading....) | Create Account
Close category search window
 

Malware Variant Detection Using Similarity Search over Sets of Control Flow Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cesare, S. ; Sch. of Inf. Technol., Deakin Univ., Burwoord, VIC, Australia ; Yang Xiang

Static detection of polymorphic malware variants plays an important role to improve system security. Control flow has shown to be an effective characteristic that represents polymorphic malware instances. In our research, we propose a similarity search of malware using novel distance metrics of malware signatures. We describe a malware signature by the set of control flow graphs the malware contains. We propose two approaches and use the first to perform pre-filtering. Firstly, we use a distance metric based on the distance between feature vectors. The feature vector is a decomposition of the set of graphs into either fixed size k-subgraphs, or q-gram strings of the high-level source after decompilation. We also propose a more effective but less computationally efficient distance metric based on the minimum matching distance. The minimum matching distance uses the string edit distances between programs' decompiled flow graphs, and the linear sum assignment problem to construct a minimum sum weight matching between two sets of graphs. We implement the distance metrics in a complete malware variant detection system. The evaluation shows that our approach is highly effective in terms of a limited false positive rate and our system detects more malware variants when compared to the detection rates of other algorithms.

Published in:

Trust, Security and Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th International Conference on

Date of Conference:

16-18 Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.