By Topic

Evolving Intelligent Mario Controller by Reinforcement Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jyh-Jong Tsay ; Dept. of Comput. Sci. & Inf. Eng., Nat. Chung Cheng Univ., Chiayi, Taiwan ; Chao-Cheng Chen ; Jyh-Jung Hsu

Artificial Intelligence for computer games is an interesting topic which attracts intensive attention recently. In this context, Mario AI Competition modifies a Super Mario Bros game to be a benchmark software for people who program AI controller to direct Mario and make him overcome the different levels. This competition was handled in the IEEE Games Innovation Conference and the IEEE Symposium on Computational Intelligence and Games since 2009. In this paper, we study the application of Reinforcement Learning to construct a Mario AI controller that learns from the complex game environment. We train the controller to grow stronger for dealing with several difficulties and types of levels. In controller developing phase, we design the states and actions cautiously to reduce the search space, and make Reinforcement Learning suitable for the requirement of online learning.

Published in:

Technologies and Applications of Artificial Intelligence (TAAI), 2011 International Conference on

Date of Conference:

11-13 Nov. 2011