By Topic

On noise-enhanced distributed inference in the presence of Byzantines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Mukul Gagrani ; Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India ; Pranay Sharma ; Satish Iyengar ; V. Sriram Siddhardh Nadendla
more authors

This paper considers the noise-enhanced distributed detection problem in the presence of Byzantine (malicious) nodes by suitably adding stochastic resonance (SR) noise. We consider two metrics the minimum number of Byzantines (αblind) needed to blind the fusion center as a security metric and the Kullback-Leibler divergence (DKL) as a detection performance metric. We show that αblind increases when SR noise is added at the honest nodes. When Byzantines also start adding SR noise to their observations, we see no gain in terms of αblind. However, the detection performance of the network does improve with SR. We also consider a game theoretic formulation where this problem of distributed detection in the presence of Byzantines is modeled as a minimax game between the Byzantines and the inference network, and numerically find Nash equilibria. The case when SR noise is added to the signals received at the fusion center (FC) from the sensors is also considered. Our numerical results indicate that while there is no gain in terms of αblind, the network-wide performance measured in terms of the deflection coefficient does improve in this case.

Published in:

Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on

Date of Conference:

28-30 Sept. 2011