Cart (Loading....) | Create Account
Close category search window
 

A nested linear codes approach to distributed function computation over subspaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Lalitha, V. ; Dept. of ECE, Indian Inst. of Sci., Bangalore, India ; Prakash, N. ; Vinodh, K. ; Kumar, P.V.
more authors

In this paper, we consider a distributed function computation setting, where there are m distributed but correlated sources X1,...,Xm and a receiver interested in computing an s-dimensional subspace generated by [X1,...,Xm]Γ for some (m × s) matrix Γ of rank s. We construct a scheme based on nested linear codes and characterize the achievable rates obtained using the scheme. The proposed nested-linear-code approach performs at least as well as the Slepian-Wolf scheme in terms of sum-rate performance for all subspaces and source distributions. In addition, for a large class of distributions and subspaces, the scheme improves upon the Slepian-Wolf approach. The nested-linear-code scheme may be viewed as uniting under a common framework, both the Korner-Marton approach of using a common linear encoder as well as the Slepian-Wolf approach of employing different encoders at each source. Along the way, we prove an interesting and fundamental structural result on the nature of subspaces of an m-dimensional vector space V with respect to a normalized measure of entropy. Here, each element in V corresponds to a distinct linear combination of a set {Xi}im=1 of m random variables whose joint probability distribution function is given.

Published in:

Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on

Date of Conference:

28-30 Sept. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.