Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Adaptive data based neural network leader-follower control of multi-agent networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Suiyang Khoo ; Sch. of Eng., Deakin Univ., Melbourne, VIC, Australia ; Juliang Yin ; Bin Wang ; Shengkui Zhao
more authors

In this paper, we propose a data based neural network leader-follower control for multi-agent networks where each agent is described by a class of high-order uncertain nonlinear systems with input perturbation. The control laws are developed using multiple-surface sliding control technique. In particular, novel set of sliding variables are proposed to guarantee leader-follower consensus on the sliding surfaces. Novel switching is proposed to overcome the unavailability of instantaneous control output from the neighbor. By utilizing RBF neural network and Fourier series to approximate the unknown functions, leader-follower consensus can be reached, under the condition that the dynamic equations of all agents are unknown. An O(n) data based algorithm is developed, using only the network's measurable input/output data to generate the distributed virtual control laws. Simulation results demonstrate the effectiveness of the approach.

Published in:

IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society

Date of Conference:

7-10 Nov. 2011