By Topic

Low voltage ride through capability enhancement of grid connected large scale photovoltaic system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Islam, G.M.S. ; Electr. Eng. Dept., Pet. Inst., Abu Dhabi, United Arab Emirates ; Al-Durra, A. ; Muyeen, S.M. ; Tamura, J.

Recently interest in photovoltaic (PV) power generation systems is increasing rapidly and the installation of large PV systems or large groups of PV systems that are interconnected with the utility grid is accelerating. To maintain the grid stability due to the huge penetration of photovoltaic power to the grid, much stricter grid codes are being imposed by the energy regulatory bodies. This paper discusses the detailed modeling and control strategies of a large scale grid connected photovoltaic system that can help to augment the low voltage ride thorough capability of DC based PV plant. It should be noted that grid side inverter plays an important role in low voltage ride through and therefore, overvoltage and undervoltage tripping of DC link of the grid tied inverter should be avoided, if possible. This study attempts to incorporate DC link over and under voltage protection in the control loop without increasing overall cost of protective device, which is another salient feature of this study. Furthermore, a comparative study with conventional inverter scheme is carried out. Different types of fault scenarios are analyzed to demonstrate the effectiveness of the overall control scheme, where recent grid code for distribution generation system is considered.

Published in:

IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society

Date of Conference:

7-10 Nov. 2011