Cart (Loading....) | Create Account
Close category search window
 

Field emission in ordered arrays of ZnO nanowires prepared by nanosphere lithography and extended Fowler-Nordheim analyses

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
McCarthy, E. ; School of Physical Sciences and National Centre for Plasma Science and Technology, Dublin City University, Glasnevin, Dublin 9, Ireland ; Garry, S. ; Byrne, D. ; McGlynn, E.
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3671402 

A multistage chemical method based on nanosphere lithography was used to produce hexagonally patterned arrays of ZnO vertical nanowires, with 1 μm interspacing and aspect ratio ∼20, with a view to study the effects of emitter uniformity on the current emitted upon application of a dc voltage across a 250 μm vacuum gap. A new treatment, based on the use of analytical expressions for the image-potential correction functions, was applied to the linear region below 2000 V of the Fowler-Nordheim (FN) plot and showed the most suitable value of the work function φ in the range 3.3–4.5 eV (conduction band emission) with a Schottky lowering parameter y ∼ 0.72 and a field enhancement factor γ in the 700–1100 range. A modeled γ value of ∼200 was calculated for an emitter shape of a prolate ellipsoid of revolution and also including the effect of nanowire screening, in fair agreement with the experimental value. The Fowler-Nordheim current densities and effective emission areas were derived as 1011 Am-2 and 10-17 m2, respectively, showing that field emission likely takes place in an area of atomic dimensions at the tip of the emitter. Possible causes for the observed departure from linear FN plot behavior above 2000 V were discussed.

Published in:

Journal of Applied Physics  (Volume:110 ,  Issue: 12 )

Date of Publication:

Dec 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.