By Topic

High temperature thermal properties of thin tantalum nitride films

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Bozorg-Grayeli, E. ; Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA ; Li, Zijian ; Asheghi, Mehdi ; Delgado, Gil
more authors

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3672098 

Tantalum Nitride (TaN) films carry high heat fluxes in a variety of applications including diffusion barriers in magnetoresistive random access memory and buffer/absorbers in extreme ultraviolet masks. The thicknesses of these films are usually of the same order as the thermal energy carrier mean free path, which complicates the study of heat conduction. This paper presents thermal (cross-plane) and electrical (in-plane) conductivity measurements on TaN films with thicknesses of 50, 75, and 100 nm. Picosecond thermoreflectance is used to extract the thermal boundary resistance between TaN and Al and the intrinsic thermal conductivity of TaN for temperatures of 300–700 K. The data and the relative importance of boundary resistances, electron-boundary scattering, and electron-defect scattering are interpreted using the electrical and thermal transport data. These data facilitate comparison of the phonon and electron contributions to thermal conduction in TaN.

Published in:

Applied Physics Letters  (Volume:99 ,  Issue: 26 )