By Topic

A Rule-Based Framework of Metadata Extraction from Scientific Papers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhixin Guo ; Cluster & Grid Comput. Lab., Huazhong Univ. of Sci. & Technol., Wuhan, China ; Hai Jin

Most scientific documents on the web are unstructured or semi-structured, and the automatic document metadata extraction process becomes an important task. This paper describes a framework for automatic metadata extraction from scientific papers. Based on a spatial and visual knowledge principle, our system can extract title, authors and abstract from scientific papers. We utilize format information such as font size and position to guide the metadata extraction process. The experiment results show that our system achieves a high accuracy in header metadata extraction which can effectively assist the automatic index creation for digital libraries.

Published in:

Distributed Computing and Applications to Business, Engineering and Science (DCABES), 2011 Tenth International Symposium on

Date of Conference:

14-17 Oct. 2011