By Topic

Laser-Enabled Advanced Packaging of Ultrathin Bare Dice in Flexible Substrates

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Val Marinov ; Center for Nanoscale Science and Engineering and the Department of Industrial and Manufacturing Engineering, North Dakota State University, Fargo, ND, USA ; Orven Swenson ; Ross Miller ; Ferdous Sarwar
more authors

Embedding ultrathin semiconductor dice in flexible substrates provides unique capabilities for product designers and makes products such as smart bank cards and radio-frequency identification banknotes possible. Most of the current work in this area is directed toward handling, embedding, and interconnecting the ultrathin chips. Relatively little attention is paid to another critical process step-placing the flexible and very fragile ultrathin die onto the flexible substrate reliably and in a cost-efficient manner, suitable for high throughput assembly. The presented laser-enabled technology for embedding ultrathin dice in a flexible substrate was developed at the Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND, to address this problem. The technology has been successfully demonstrated and proven for the fabrication of an RFID tag.

Published in:

IEEE Transactions on Components, Packaging and Manufacturing Technology  (Volume:2 ,  Issue: 4 )