By Topic

Product Code Schemes for Error Correction in MLC NAND Flash Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chengen Yang ; Electrical Engineering, Arizona State University, Tempe, United States ; Yunus Emre ; Chaitali Chakrabarti

Error control coding (ECC) is essential for correcting soft errors in Flash memories. In this paper we propose use of product code based schemes to support higher error correction capability. Specifically, we propose product codes which use Reed-Solomon (RS) codes along rows and Hamming codes along columns and have reduced hardware overhead. Simulation results show that product codes can achieve better performance compared to both Bose-Chaudhuri-Hocquenghem codes and plain RS codes with less area and low latency. We also propose a flexible product code based ECC scheme that migrates to a stronger ECC scheme when the numbers of errors due to increased program/erase cycles increases. While these schemes have slightly larger latency and require additional parity bit storage, they provide an easy mechanism to increase the lifetime of the Flash memory devices.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:20 ,  Issue: 12 )