By Topic

Servo-Pattern Design and Track-Following Control for Nanometer Head Positioning on Flexible Tape Media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lantz, M.A. ; IBM Res. - Zurich, Ruuschlikon, Switzerland ; Cherubini, G. ; Pantazi, A. ; Jelitto, J.

Achieving multi-Terabyte capacity in tape cartridges requires a substantially higher track density than that available in present systems, and hence a significantly higher positioning accuracy is required of the track-following servo in tape drives. In this paper, advanced concepts are considered for several elements of a tape system that enhance the track-following servo performance to reach nanometer positioning accuracy. We introduce a novel method for optimizing the geometry of servo patterns in a timing-based servo system. The design criterion aims to minimize the measurement error in the position-error signal (PES) yielded by a digital synchronous servo channel. A flangeless tape path is adopted to mitigate high-frequency components of the lateral tape motion. The track-following servo controller, which is designed based on the H approach, takes into account the measured plant transfer function, the disturbance characteristics of the tape path, and the properties of servo channel. These elements are combined to investigate the track-following performance achievable with a new high-SNR magnetic tape based on perpendicularly-oriented BaFe particles. With this setup, a record closed-loop track-following performance of less than 14 nm PES standard deviation is demonstrated.

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:20 ,  Issue: 2 )