Cart (Loading....) | Create Account
Close category search window

Analysis and Design of Binary Message Passing Decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lechner, G. ; Inst. for Telecommun. Res., Univ. of South Australia, Adelaide, SA, Australia ; Pedersen, T. ; Kramer, G.

Binary message passing decoders for low-density parity-check codes are studied by using extrinsic information transfer charts. The channel delivers hard or soft decisions and the variable node decoder performs all computations in the log-likelihood ratio (L-value) domain. A hard decision results in the Gallager B algorithm and examples show that increasing the channel output alphabet to two bits gains more than 1.0 dB in signal to noise ratio when using optimized codes. Finally, it is shown that errors on cycles consisting only of degree two and three variable nodes cannot be corrected and a necessary and sufficient condition for the existence of a cycle-free subgraph is derived.

Published in:

Communications, IEEE Transactions on  (Volume:60 ,  Issue: 3 )

Date of Publication:

March 2012

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.