Cart (Loading....) | Create Account
Close category search window

DC optimization approach to robust controls: the optimal scaling value problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tuan, H.D. ; Dept. of Electron. Mech. Eng., Nagoya Univ., Japan ; Hosoe, S. ; Tuy, H.

The optimal scaling problem (OSP) for constant scaling in output feedback control is an inherently difficult nonconvex problem for which existing local search algorithms can at best locate a local solution. Because of the presence of additional nonconvex constraints, OSP is a harder problem than the feasibility problem (FP) studied in Tuan et al. However, like FP, it can be restated as a problem of globally minimizing a convex function under DC constraints, i.e. constraints that can be expressed in terms of differences of convex functions. A particular structure of this DC optimization problem is that it becomes convex when a relatively small number of “complicating” variables are held fixed. We propose alternative branch and bound algorithms for OSP, which exploit this structure by branching upon the complicating variables and use adaptive subdivision strategies to speed up the convergence to the global solution

Published in:

American Control Conference, 1997. Proceedings of the 1997  (Volume:1 )

Date of Conference:

4-6 Jun 1997

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.