By Topic

Game Dynamics and Cost of Learning in Heterogeneous 4G Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Manzoor Ahmed Khan ; Technische Universitat Berlin, Germany ; Hamidou Tembine ; Athanasios V. Vasilakos

In this paper, we study game dynamics and learning schemes for heterogeneous 4G networks. We introduce a novel learning scheme called cost-to-learn that incorporates the cost to switch, the switching delay, and the cost of changing to a new action and, captures the realistic behavior of the users that we have experimented on OPNET simulations. Considering a dynamic and uncertain environment where the users and operators have only a numerical value of their own payoffs as information, we construct various heterogeneous combined fully distributed payoff and strategy reinforcement learning (CODIPAS-RL): the users try to learn their own optimal payoff and their optimal strategy simultaneously. We establish the asymptotic pseudo-trajectories as solution of differential equations. Using evolutionary game dynamics, we prove the convergence and stability properties in specific classes of dynamic robust games. We provide various numerical examples and OPNET simulations in the context network selection in wireless local area networks (WLAN) and Long Term Evolution (LTE).

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:30 ,  Issue: 1 )