By Topic

Rooting-Based Harmonic Retrieval Using Multiple Shift-Invariances: The Complete and the Incomplete Sample Cases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Parvazi, P. ; Commun. Syst. Group, Tech. Univ. Darmstadt, Darmstadt, Germany ; Pesavento, M. ; Gershman, A.B.

In the present paper, we propose a novel method for estimating one-dimensional damped and undamped harmonics. Our method utilizes the multiple shift-invariance property comprised in the signal model. We develop a new rank-reduction estimator which is formed as the weighted sum of the individual matrix polynomials obtained from individual shift-invariance equations. The uniqueness conditions for the proposed rank-reduction criteria are derived under the assumption that all samples are available. Moreover, a novel technique for the incomplete data case, where some samples are missing, is presented. In this case, the rank-reduction estimator may suffer from ambiguities. To overcome this problem, we propose an extension of the rank-reduction estimator that is based on polynomial intersection and the properties of the Sylvester matrix. The latter algorithm yields unique estimates of the damped harmonics. The proposed high-resolution techniques are search-free and therefore, they enjoy moderate computational complexity.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 4 )