By Topic

Joint Blind Source Separation With Multivariate Gaussian Model: Algorithms and Performance Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Anderson, M. ; Dept. of Comput. Sci. & Electr. Eng., Univ. of Maryland, Baltimore, MD, USA ; Adali, T. ; Xi-Lin Li

In this paper, we consider the joint blind source separation (JBSS) problem and introduce a number of algorithms to solve the JBSS problem using the independent vector analysis (IVA) framework. Source separation of multiple datasets simultaneously is possible when the sources within each and every dataset are independent of one another and each source is dependent on at most one source within each of the other datasets. In addition to source separation, the IVA framework solves an essential problem of JBSS, namely the identification of the dependent sources across the datasets. We propose to use the multivariate Gaussian source prior to achieve JBSS of sources that are linearly dependent across datasets. Analysis within the paper yields the local stability conditions, nonidentifiability conditions, and induced Cramér-Rao lower bound on the achievable interference to source ratio for IVA with multivariate Gaussian source priors. Additionally, by exploiting a novel nonorthogonal decoupling of the IVA cost function we introduce both Newton and quasi-Newton optimization algorithms for the general IVA framework.

Published in:

Signal Processing, IEEE Transactions on  (Volume:60 ,  Issue: 4 )