By Topic

Distributed Estimation Fusion With Application to a Multisensory Vehicle Suspension System With Time Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Seokhyoung Lee ; School of Information and Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Korea ; Moongu Jeon ; Vladimir Shin

A new distributed fusion filtering algorithm for linear multiple time-delayed systems is proposed. The multisensory distributed fusion filter is formed by the summation of local Kalman filters having time delays (LKFTDs) in both the system and measurement models. The proposed distributed filter has a parallel structure that enables processing of multisensory measurements; thereby, it is more reliable than the centralized version if some sensors turn faulty. The key contribution of this paper is the derivation of recursive error cross-covariance equations between the LKFTDs to compute the optimal matrix fusion weights. In the particular case of multisensory dynamic systems having time delays in only the measurement model, the obtained results coincide with the previous work of Sun. The high accuracy and efficiency of the proposed distributed filter are then demonstrated through its implementation on a vehicle suspension system.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:59 ,  Issue: 11 )