By Topic

Sliding Mode Control Approach for Online Learning as Applied to Type-2 Fuzzy Neural Networks and Its Experimental Evaluation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Erdal Kayacan ; Department of Electrical and Electronics Engineering, Bogazici University, Istanbul, Turkey ; Ozkan Cigdem ; Okyay Kaynak

Type-2 fuzzy logic systems (FLSs) are proposed in the literature as an alternative to type-1 FLSs because of their ability to more effectively model uncertainties that may exist in the rule base. However, the parameters of the system still need to be optimized. For this purpose, the use of a sliding mode control theory-based learning algorithm is proposed in this paper. In the approach, instead of trying to minimize an error function, the parameters of the network are tuned by the proposed algorithm in such a way that the learning error is enforced to satisfy a stable equation. The update rules to achieve this are derived, and the convergence of the parameters is proved by Lyapunov stability method. The performance of the proposed algorithm is tested by simulations on a Duffing oscillator and also by real-time experiments on a laboratory servo system. The results indicate that the given type-2 fuzzy neural network with the proposed learning algorithm can handle the uncertainties in a better way as compared to its type-1 counterpart. Moreover, it is computationally easier to implement in real-time systems.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:59 ,  Issue: 9 )