By Topic

Fully Automated Colon Segmentation for the Computation of Complete Colon Centerline in Virtual Colonoscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lin Lu ; Dept. of Biomed. Eng., Shanghai Jiao Tong Univ., Shanghai, China ; Dangfeng Zhang ; Lei Li ; Jun Zhao

Virtual colonoscopy detects polyps by navigating along a colon centerline. Complete colon segmentation based on computed tomography (CT) data is a prerequisite to the computation of complete colon centerline. There are two main problems impeding complete segmentation: overdistention/underdistention of colon and the use of oral contrast agents. Overdistention produces loops in the segmented colon, while underdistention may cause the segmented colon collapse into a series of disconnected segments. Use of oral contrast agents, which have high attenuation on CT, may add redundant structures (bones and small bowels) to the segmented colon. A fully automated colon segmentation method is proposed in this paper to address the two problems. We tested the proposed method in 170 cases, including 37 “moderate” and 133 “challenging” cases. Computer-generated centerlines were compared with human-generated centerlines (plotted by three radiologists). The proposed method achieved a 90.56% correct coverage rate with respect to the human-generated centerlines. We also compared the proposed method with two existing colon segmentation methods: Uitert's method and Nappi's method. The results of these two methods were 75.16% and 72.59% correct coverage rates, respectively. Our experimental results indicate that the proposed method could yield more complete colon centerlines than the existing methods.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:59 ,  Issue: 4 )