By Topic

A new image deblurring algorithm with less ringing artifacts via error variance estimation and soft decision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ruiqin Xiong ; School of Electronic Engineering & Computer Science, Peking University, Beijing 100871, China ; Wenpeng Ding ; Siwei Ma ; Wen Gao

Image deblurring is an ill-posed linear inverse problem. Most traditional algorithms suffer from severe ringing artifacts. Recent approaches handle this issue by regularization techniques based on assumed image prior models. This paper presents a new method to reduce the ringing artifacts, without introducing any image prior models. For this purpose, we revisit the deblurring problem, using a probabilistic graph to model the image formation process. We establish the link between iterative back-projection and belief propagation and show that the ringing artifacts are caused by error propagation. Based on these analysis, we introduce a method to measure the variance of an estimation image and further propose an error-variance aware deblurring algorithm. Experimental results demonstrate that the proposed algorithm is very effective in suppressing the ringing artifacts.

Published in:

2011 18th IEEE International Conference on Image Processing

Date of Conference:

11-14 Sept. 2011