By Topic

Facial expression recognition using clustering discriminant Non-negative Matrix Factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Nikitidis, S. ; Dept. of Inf., Aristotle Univ. of Thessaloniki, Thessaloniki, Greece ; Tefas, A. ; Nikolaidis, N. ; Pitas, I.

Non-negative Matrix Factorization (NMF) is among the most popular subspace methods widely used in a variety of image processing problems. Recently, a discriminant NMF method that incorporates Linear Discriminant Analysis criteria and achieves an efficient decomposition of the provided data to its discriminant parts has been proposed. However, this approach poses several limitations since it assumes that the underline data distribution forms compact sets which is often unrealistic. To remedy this limitation we regard that data inside each class form various number of clusters and apply a Clustering based Discriminant Analysis. The proposed method combines appropriate discriminant constraints in the NMF decomposition cost function in order to address the problem of finding discriminant projections that enhance class separability in the reduced dimensional projection space. Experimental results performed on the Cohn-Kanade database verified the effectiveness of the proposed method in the facial expression recognition task.

Published in:

Image Processing (ICIP), 2011 18th IEEE International Conference on

Date of Conference:

11-14 Sept. 2011