By Topic

Hybrid blind deconvolution of images using variable splitting and proximal point methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dolui, S. ; Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada ; Michailovich, O.V.

The problem of blind deconvolution of digital images has long been recognized as one of the central problems in imaging science. In this paper, the problem is solved using a hybrid deconvolution approach. Here, the “hybridization” suggests a two-stage reconstruction procedure. In the first stage, some partial information about the point spread function of the imaging system (namely, its magnitude spectrum) is recovered. Subsequently, the obtained information is exploited to explicitly constrain the procedure of inverse filtering. The latter is realized in the form of an optimization problem which is solved using alternating direction method of multipliers (ADMM). We show that this method leads to a particularly efficient numerical scheme, which can be implemented as a succession of analytically computable proximity operations. The effectiveness of the proposed deconvolution procedure is exemplified by a number of computer experiments.

Published in:

Image Processing (ICIP), 2011 18th IEEE International Conference on

Date of Conference:

11-14 Sept. 2011