By Topic

Intelligent filtering by semantic importance for single-view 3D reconstruction from Snooker video

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Legg, P.A. ; Dept. of Comput. Sci., Swansea Univ., Swansea, UK ; Parry, M.L. ; Chung, D.H.S. ; Jiang, R.M.
more authors

In this paper we investigate the challenge of 3D reconstruction from Snooker video data. We propose a system pipeline for intelligent filtering based on semantic importance in Snooker. The system can be divided into table detection and correction, followed by ball detection, classification and tracking. It is apparent from previous work that there are several challenges presented here. Firstly, previous methods tend to use a fixed top-down camera mounted above the table. To capture a full table view from this is challenging due to space limitations above the table. Instead, we capture video data from a tripod and correct the viewpoint through processing. Secondly, previous methods tend to simply detect the balls without considering other interfering objects such as player and cue. This becomes even more apparent when the player strikes the cue ball. Our intelligent filtering avoids such issues to give accurate 3D table reconstruction.

Published in:

Image Processing (ICIP), 2011 18th IEEE International Conference on

Date of Conference:

11-14 Sept. 2011