By Topic

Efficient real-time local optical flow estimation by means of integral projections

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Senst, T. ; Commun. Syst. Group, Tech. Univ. Berlin, Berlin, Germany ; Eiselein, V. ; Patzold, M. ; Sikora, T.

In this paper we present an approach for the efficient computation of optical flow fields in real-time and provide implementation details. Proposing a modification of the popular Lucas-Kanade energy functional based on integral projections allows us to speed up the method notably. We show the potential of this method which can compute dense flow fields of 640×480 pixels at a speed of 4 fps in a GPU implementation based on the OpenCL framework. Working on sparse optical flow fields of up to 17,000 points, we reach execution times of 70 fps. Optical flow methods are used in many different areas, the proposed method speeds up current surveillance algorithms used for scene description and crowd analysis or Augmented Reality and robot navigation applications.

Published in:

Image Processing (ICIP), 2011 18th IEEE International Conference on

Date of Conference:

11-14 Sept. 2011