By Topic

Dynamic compressive magnetic resonance imaging using a Gaussian scale mixtures model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yookyung Kim ; Dept. of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA 85721 ; Mariappan S. Nadar ; Ali Bilgin

Dynamic magnetic resonance imaging (MRI) is commonly used to observe dynamic physiological changes in tissue or to study organs with mobile structures such as the heart. In order to accurately capture spatiotemporal changes, it is desirable to have dynamic images with high temporal resolution in addition to high spatial resolution. Due to the nature of data acquisition in current MRI systems, there exists a trade-off between temporal and spatial resolution. In this work, we present two methods for improving the spatiotemporal resolution in dynamic MRI using compressive sampling (CS). Experimental results illustrate that the proposed Bayes least squares-Gaussian scale mixtures (BLS-GSM) model-based CS algorithm compares favorably with other state-of-the-art compressive dynamic MRI techniques.

Published in:

2011 18th IEEE International Conference on Image Processing

Date of Conference:

11-14 Sept. 2011