Cart (Loading....) | Create Account
Close category search window

Accurate depth map estimation from video via MRF optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sheng-Po Tseng ; Dept. of Comput. Sci., Nat. Tsing Hua Univ., Hsinchu, Taiwan ; Shang-Hong Lai

In this paper, we propose a novel system to estimate depth maps of outdoor scenes from a video sequence. According to the characteristics of a video, our approach considers more information in the temporal domain than the traditional depth reconstruction methods. We perform Structure From Motion (SfM) on consecutive image frames from a video from SIFT feature point correspondences, which provides some camera information, including 3D translation and rotation, for all the images. Then, we compute the constrained optical flow between selected scenes so that we can solve an over-constrained linear system to estimate the depth map for all pixels at each frame. In addition, mean shift image segmentation is incorporated to aggregate the depth estimation. Thus, this initial depth map is used as the data term of our pixel-based and region-based Markov Random Field (MRF) formulation for depth map estimation. The proposed MRF depth estimation not only imposes adaptive smoothness constraints but also includes sky detection in the final depth map estimation. By minimizing the associated MRF energy function for each frame, we obtain refined depth maps that achieve detail-preserving and temporally consistent depth estimation results.

Published in:

Visual Communications and Image Processing (VCIP), 2011 IEEE

Date of Conference:

6-9 Nov. 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.